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Vegetated habitats contain a variety of fine-scale features that can ameliorate

temperate extremes. These buffered microhabitats may be used by species to

evade extreme weather and novel climates in the future. Yet, the magnitude

and extent of this buffering on a global scale remains unknown. Across all trop-

ical continents and using 36 published studies, we assessed temperature

buffering from within microhabitats across various habitat strata and structures

(e.g. soil, logs, epiphytes and tree holes) and compared them to non-buffered

macro-scale ambient temperatures (the thermal control). Microhabitats buf-

fered temperature by 3.98C and reduced maximum temperatures by 3.58C.

Buffering was most pronounced in tropical lowlands where temperatures

were most variable. With the expected increase in extreme weather events,

microhabitats should provide species with a local layer of protection that is

not captured by traditional climate assessments, which are typically derived

from macro-scale temperatures (e.g. satellites). Our data illustrate the need

for a next generation of predictive models that account for species’ ability to

move within microhabitats to exploit favourable buffered microclimates.
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1. Introduction
All species have evolved physiological limits to match the environments in which

they live; this is a fundamental factor determining the distributions of species.

These distributions are predicted to change as a consequence of changing climate

[1]: as the world warms species ought to move to cooler climates at either higher lati-

tudes or higher elevations to avoid negative physiological consequences. Indeed,

there are now dozens of studies showing that plants, insects, fish, birds and mam-

mals are making such a shift (e.g. [2]). However, there are numerous other studies

that have found either no shift or less of a shift than predicted (e.g. [2,3]).

The discordance in these studies may be due to the varying scales at which dis-

tribution models are created and those at which organisms actually live (e.g. see

macro-scale climate data used by Warren et al. [4] and discussion by Gillingham

et al. [5]). Distribution models are based on macroclimatic data sampled from

meteorological observations or satellite data collected at kilometre scales (see [6]

for discussion). Such large scales do not consider fine-scale heterogeneity, effectively

‘microhabitats’ within the ‘macrohabitat’, which is used by the organisms to evade

changing climates, especially over short time scales [7–9]. Finding refuge will be

critical as extreme weather events are predicted to increase into the future [10].

There are many forms of microhabitat that could provide refuge from daily,

seasonal or other types of short-term variation in climate, such as heatwaves or
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Figure 1. Temperature buffering across habitat types and biogeographic provinces in the tropics. Box and whisker plots with black borders indicate the medians of
mean differences between micro- and macrohabitats, whereas plots with grey borders indicate medians of mean differences in maximum temperatures. Data below
zero indicate thermal buffering (i.e. microhabitats were cooler than macrohabitat temperatures). ‘combined’ indicates all data combined across provinces for each
habitat type, whereas ‘total’ indicates the summary across all provinces and habitats. (Online version in colour.)
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drought. These include under rocks and logs, and inside the

soil, tree holes or epiphytes, all of which could offer buffered

microclimates and act as a mediating force of ambient temp-

eratures at fine spatial scales and expand an animal’s thermal

safety margin by several degrees centigrade [9,11,12].

Here, we review the buffering by microhabitats within

macrohabitats and thus the potential scale of inflation of

species risk from the use of macro-scale temperatures. We

do this by asking two questions: (i) How well do different

microhabitats buffer temperature; and (ii) Is temperature

buffering similar across continents?
2. Material and methods
We collated data on the mean, maximum and variance in tempera-

tures from peer-reviewed literature on micro- and macrohabitat

temperatures from the Earth’s tropical regions in ISI Web of Science

and Google Scholar. We used only studies that had paired design,

i.e. sampled at least one microhabitat and the macrohabitat (i.e.

ambient air) temperatures adjacent to the microhabitat. We took

data from tables or from graphs (using Digitizeit, www.digitizeit.

de to extract data from the graphs). In total, we reviewed 36 studies

from 1957 to 2013 from 25 countries (electronic supplementary

material, figure S1 and table S1; see Supplementary Methods for

more details).

We analysed temperature buffering in microhabitats compared

with macrohabitats across microhabitat types, elevation and bio-

geographic provinces ([13], hereafter referred to as provinces).

We calculated temperature buffering by subtracting the mean

and maximum macrohabitat temperature from the mean and

maximum microhabitat temperature, respectively. We grouped

microhabitats by their location: ground (e.g. soil, leaf litter, log),

above-ground tree holes, above-ground epiphytes and under-

canopy vegetation (i.e. measuring the influence of shade). We

defined macrohabitat types as boulder field, grassland, conifer

forest, shrubland, savannah, plantation, deciduous forest and

rainforest. We used R stats v. 2.15.1 (R Project for Statistical

Computing, http://www.r-project.org) for all statistical analyses.
3. Results
Thermal buffering was consistent across continents, with all

microhabitats reducing macro-scale ambient temperatures

(figure 1). Mean temperatures in microhabitats were 3.9+0.5

(s.e.)8C lower and maximum temperatures were 3.5+0.5

(s.e.)8C lower than those in macrohabitats (figure 1). There

were significant differences in temperatures across all micro-

and macrohabitats (Wilcoxon–Mann Whitney rank sum test;

W ¼ 6913986, p , 0.001). Canopy vegetation had the greatest

buffering effect in reducing mean ambient macrohabitat temp-

eratures (248C) followed by epiphytes (23.98C), ground

vegetation (23.88C) and tree holes (23.78C).

Mean temperature variance was generally lower across all

elevations for microhabitats compared with macrohabitats

(electronic supplementary material, figures S2 and S3).

There was little difference in microhabitat buffering among

macrohabitats, with the exception of grasslands. Grasslands

contained microhabitats that were warmer than ambient

temperatures (electronic supplementary material, figure S4).

Microhabitats across all macrohabitats buffered maximum

temperatures and were comparable in temperature variance

(electronic supplementary material, figures S5 and S6).

Thermal buffering was also evident in the reduction of

variance in temperatures. Of the 58 micro- to macrohabitat

comparisons of mean temperature variance, 76% of the points

fell below the equivalency line—indicating that microhabitat

temperatures were buffered (figure 2). The strength of the

relationship between micro- and macrohabitat temperatures

was contingent on the amount of thermal variability in the

system. For example, when macrohabitats had small variances

in temperature, microhabitats too had equally small variances.

In fact, variance around means ranging from 0 to 10 tracked

the equivalency line (linear regression; slope¼ 0.57) and were

highly correlated (Pearson’s correlation; r¼ 0.65) (figure 2),

suggesting that macro- and microhabitat variance were rela-

tively equivalent. However, this relationship diminished with

increasing variances at the macro scale (linear regression;
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Figure 2. Relative difference in mean temperature variance between micro-
and macrotemperatures (macroclimate) displayed by microhabitat type. The
dashed line indicates temperature equivalency between micro- and macro-
temperatures. Thus, points that fall below the equivalency line indicate
higher mean variance within macrohabitats than microhabitats. The black
line indicates a regression line for all locations with a macrohabitat variance
below 10 ( y ¼ 0.56x þ 3), whereas the grey line indicates a regression line
for all locations with a macrohabitat variance above 10 ( y ¼ 0.23x þ 47).
The two extreme points above the equivalency line represent temperature
variance in a tropical rainforest canopy of Australia and temperature variance
within ground microhabitats in a tropical savannah of Zimbabwe. (Online
version in colour.)
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slope ¼ 0.23 and Pearson’s correlation; r¼ 0.21) (figure 2). This

suggests that variance in macrohabitat temperature changes at a

different rate from microhabitat variance, with the effect of

buffering by microhabitats becoming greater with increasing

macrohabitat variability.
4. Discussion
Microhabitats buffered temperature in a globally coherent

manner. Our data suggest that an array of microhabitats dis-

tributed across the habitat strata and spanning the four

tropical continents strongly buffered temperature relative to

ambient environments (figure 1 and electronic supplemen-

tary material, figure S1). Temperature may vary by as much

as 6–108C both within and among habitat types [8,14–16]

and simply accounting for shade provided by structurally

complex rainforest canopies may reduce temperature maxi-

mums by up to 68C in tropical systems of Australia [17]

and by approximately 48C globally (results herein; figure 1).

At the extreme, some microhabitats in our study buffered

temperature by over 208C. Interestingly, microhabitats such
as epiphytes act as air conditioners in the rainforest canopy

that stabilize temperature and reduce surrounding maximum

ambient temperature [18–20].

Microhabitats in the lowlands performed a superior

job in buffering maximum temperatures compared with

those in the uplands, but lowlands showed the greatest var-

iance in both micro- and macrohabitat temperatures. Many

lowland species live in isolation from major topographic

gradients (e.g. majority of the Amazon rainforests) and lack

proximate elevation gradients to exploit as temperature

warms and as extreme temperature events become more

prevalent (e.g. [21]). Therefore, buffered microhabitats may

represent the sole means for these species to evade future cli-

mates, provided the microhabitat itself remains viable with

climate change [8,22].

There is currently widespread use of macroclimate data in

modelling species distributions [4], dispersal capabilities [23]

and range shifts [2]. But species that have flexible habitat

requirements may shift, within or between microhabitats, to

exploit favourable buffered microclimates. Our data suggest

that this is appropriate for extreme short-term or rapid changes

in temperatures, because there are apparently non-uniform

shifts in micro- to macrohabitat temperatures, indicating time

lags between warming at the macro-scale and corresponding

temperature rises at the micro-scale ([12]; figure 2). While

species are already moving in response to recent changes in

temperature, almost every taxonomic group considered is

shifting its range upwards in elevation at a slower rate than

expected [2]. One possible explanation for erratic species

shifts is that the temperatures used to predict range shifts

were measured at scales that do not account for the presence

of buffered microhabitats and the slower rates of temperature

change within microhabitats compared with macrohabitats.

Combined with our illustration of the potential for microhabi-

tat buffering, this suggests that we need a next generation of

predictive models that account for species’ ability to exploit

favourable microclimates, via the inclusion of species physio-

logical limitations [24], trade-offs from using climate refuges

for extended periods of time [9] and detailed information

about fine-resolution temperature changes and extreme

conditions at the microhabitat scale [5,25].
Data accessibility. Data deposited in Dryad, provisional doi:10.5061/
dryad.cb051.
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